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Abstreact—Some elastic materials are capable of sustaining finite equilibrium deformations with
discontinuous stratns. Boundary-value problems for such “unstable™ elastic materials often possess
an infinite number of solutions, suggesting that the theory suffers from a constitutive
deficiency. In the setting of the one-dimensional theory of bars in tension, the present paper explores
the conscquences of supplementing the theory with further constitutive information. This additional
information pertains to the surface of strain discontinuity and consists of a “kinetic relation™ and
a criterion for the “initiation™ of such a surface. We show that the quasi-static responsc of the bar
to a preseribed foree history is then fully determined. In particular, we observe how unstable elastic
materials can be used to model macroscopic behavior similar to that associated with viscoplasticity.

I. INTRODUCTION

Bodics composed of certain types of homogencous clastic materials can be finitely deformed
to equilibrium states in which displacement gradients, strains and stresses sufler jump
discontinuitics across special surfuces. Elastostatic ficlds of this kind arise, for example, in
continuum mechanical treatments of stress-induced phase transformations in solids (James,
1979, 1984).

When such jumps in displacement gradient occur during quasi-static, isothermal
motions, the balunce between the rate of increase of stored energy and the rate of work of
external forees associated with conventionally smooth deformations of elastic bodies no
longer holds. This balance s replaced by one which includes an additional effect that may
be interpreted as the rate of work of a fictitious **driving traction™ acting on the moving
surface of discontinuity (Knowles, 1979). The driving traction is formally related to the
notion of a “"force on a defect” introduced by Eshelby (1956) and discussed by Rice (1975).

The altered energetics of finite elastostatic fields involving strain jumps suggest that
such ficlds might be used to model certain types of dissipative behavior in solids. The
circumstances, in fact, arc reminiscent in some respects of those present in the classical
theory of flows of ideal fluids in which shock waves are present. In the latter subject, shocks
account in an idealized way for the neglected dissipative effects of viscosity and heat
conduction (see p. 322 of Landau and Lifshitz (1959)). Because of this similarity, we refer
to surfaces bearing jump discontinuities in the displacement gradient in an elastostatic ficld
as “cquilibrium shocks™.

Not all clastic materials are capable of sustaining deformations with equilibrium
shocks. Those that do have this capability are sometimes called unstable materials; they
lead to differential equations of equilibrium that necessarily fail to be elliptic at some
deformation (Knowles and Sternberg, 1978). This in turn leads to a massive loss of
uniqueness of solution for the boundary value problems of elastostatics, suggesting the
need for additional constitutive assumptions that will select from among the many possible
equilibrium states that one which is preferred by the body. One such additional constitutive
postulate asserts that the material is conservative at all of its particles, including those on
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shocks. so that the body prefers the equilibrium state which renders the appropriate energy
functional an absolute minimum. With this assumption in force. the driving traction acting
on any equilibrium shock necessarily vanishes (Abevaratne, 1983 Gurtin. 1983). the con-
ventional balance between work and energy ts preserved. and no dissipation takes place. In
this conservative setting, elastostatic fields with shocks have recently received much ana-
Iytical attention (James, 1979, 1981, 1986 : Gurtin. 1983 ; Ericksen. 1975 ; Abevaratne, 1980 ;
Ball and James, 1987 ; Fosdick and James. 1981 ; Fosdick and MacSithigh, 1983 Silling,
1988).

In two recent papers (Abeyaratne and Knowles, 1987a.b), we have discussed an
example in order to tllustrate an alternative constitutive postulate. The problem treated in
these papers involves a finite, plane deformation of an infinite medium containing a circular
cavity. A uniform circumferential traction is applied to the cavity wall. and the displacement
is required to vanish at infinity. For the class of incompressible, isotropic elastic materials
constdered. the resulting twisting deformation may exhibit a circular equilibrium shock
concentric with the cavity. In quasi-static motions of the body involving such equilibrium
states, the relationship between the applied torque and the twist at the cavity wall —i.e. the
macroscopic response —is in general hysteretic. We showed that if a certarn maximum-
dissipation postulate is used as the supplementary constitutive assumption, the macroscopic
response mimics that associated with rate-independent clastic -plastic behavior.

Our purpose in the present paper is to discuss supplementary constitutive models for
elastic ficlds capable of sustaining equilibrium shocks in more generality. The principal new
featurc introduced here is a “kinetic relation™ analogous to those arising in microstructural
models of plastic bechavior formulated in terms of internal variables (Rice, 1970, 1971,
1975). In our circumstances, this relation takes the form of a constitutive law connecting
the driving traction acting on a moving shock with the shock velocity during a quast-static,
isothermal motion. We show that appropriate choices of the kinetic relation lead to visco-
plastic macroscopic response, and we recover conservative (minimum-cnergy) response as
well as rate-independent clastic plastic behavior as special or limiting cascs.

When there s an equilibrium shock in the body, the kinetic law governs its evolution.
However a sepiarate criterion - an inttiation or nucleation criterion  is required in order
to signal the mitial appearance of the shock. This too will be discussed in the following.

For simplicity, we work here in the context of a one-dimensional model for extensional
deformations of an clastic bar, Our setting is thus essentially that of Ericksen (1975) in his
discussion of one-dimensional deformations with strain jumps, except that we consider birs
the cross-sectional area of which varies with position. The special case of the uniform bar
turns oul to be exceptional in certain important respects.

After introducing in the tollowing section the class of elastic matenials to be considered,
we investigate equilibrium states with a single shock in Section 3. Sections 4 and 5 are
concerned with the energetics ol quasi-static, isothermal motions of the bar and the admissi-
bility of such motions according to the second law of thermodynamics. We introduce the
notion of a kinetic relation as well as a shock initiation criterion in Section 6, and in Section
7 present examples to tllustrate the possibilities offered by the theory.

An approach of the type put forward here may have application to the modeling of
the mechanical response of shape-memory alloys (Delaey er al., 1974), to continuum
descriptions of the effect of the presence of a “damaged phasce™ on the behavior of solids,
and to transformation toughening in ceramic composites (Budiansky er al., 1983).

2. PRELIMINARIES

Consider a bar composed of a homogeneous elastic material, which in its reference
configuration occupies the interval {0, L]. Let x denote the coordinate of a genceric point of
the bar in this configuration. If the reference cross-sectional arca of the bar at xis A(x) > 0.
it is assumed that A e C[0, L]. We also assume that A(x) increases monotonically with x,
so that

AW >0, 0y L. (hH
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We shall show later that the special case of the uniform bar (A°(x) = 0) is exceptional in
certain respects ; it is temporarily excluded from consideration.
A deformation of the bar is characterized by an invertible mapping

y=x+u(x), 0<x<L 2)

which subjects the particle at x to a displacement « and carries it to a new location y. There
is no loss of generality in taking the left-hand end of the bar to be fixed; if § denotes the
elongation of the bar

u(L) =96, u(0) =0. 3

[t will be necessary in the following to consider displacement fields which are less than
classically smooth, and accordingly we allow for the possibility that, although u is con-
tinuous on [0. L]. there is a number s€[0, L] such that (i) v is continuously differentiable
o [0. 5]+ [s. L]. (i) u is twice continuously differentiable on (0.5) + (s, L). and (iii) «" suffers
a finite jump discontinuity across x = 5. The strain ¢ at a particle x # s is defined by

gy =w(x)> -1, 0Sx<L, x#5; CY)

inequality (4), assures the invertibility of mapping (2).
Let o(x) be the nominal stress ficld in the bar. Equilibrium in the absence of body
forces requires

a(N)A(x) = F=constant, 0<x<L; (5)

F denotes the foree in the bar. Clearly, o e C[0, L.

The material is characterized by an clastic potential W the value of which is the strain
encergy per unit reference volume, We assume that B is defined on (=1, oo) and that it is
twice continuously differentiable there. The stress response function of the bar G(x) is given
in terms of W by

aey=W'), —-l<e<x (6)
so that by (5), the stress at x is
d(e(v)) = F/A(x), 0<Sx<L, x#s. (7)

If Fis given, the force problem consists of finding a displacement field v of the requisite
smoothness conforming to (7), (4) and (3),. If d is given, the elongation problem requires
the determination of a constant F and a displacement field « satisfying (7), (4) and (3). We
shall be concerned only with the force problem.

From a thermodynamic viewpoint, the present analysis assumes that conditions are
isothermal. The elastic potential W coincides with the Helmholtz free energy of the material
at the given temperature, while the associated Gibbs free energy G expressed in terms of
strain is

Gie) = WE)—d@@)e, —-l<e<ax. 8)

In this paper we restrict attention to materials the stress response function d(g) of
which first increases with increasing e, then decreases, and finally increases again (Fig. 1).
Specifically we suppose that there are positive numbers &y, and &, such that d'(e,) =
G (e,) =0.6 () >0for ~1 <e<ey.6'() <0forey <e<e, and ¢'(c) >0 fore, <.
Morcover

Ty = 0"((:",) > 0, Ty = (f'(&,,,) > 0. 5(3C) = 0, &(— l) = —00. (9)
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Fig. 1. Stress-strain curve,

Note that these materials are of *Baker-Ericksen type” in the sense that 6(s)e > O fore £ 0.
For our purposes, it is sufficicnt to consider only tensile stresses, so we restrict attention
henceforthto o = 0.

Although d(&) is not invertible on (— I, o), its restrictions to certain subscts of this
interval do have inverses, and these play a major role in the analysis to follow. Let §,, €, &
be the functions inverse to the restrictions of d(e) to the respective intervals {(— 1, g5,
[£r. €a)s and {e,,, o0) ; these inverse functions are defined on (— ¢, 64]. [0, 0y} and [7,,, 0),
respectively. Each function & is continuous on its domain of definition, and is continuously
differentiable on the interior of that domain. Finally, let g, be the unique number in the
interval (o,,,54,) for which the two shaded regions in Fig. | have equal arcas. In terms of
the Gibbs free energy

G(éy(0.)) = G(Ei(0.)): (10)

6. is the Maxwell stress of the material.

3. EQUILIBRIUM STATES

If &(x) is a solution of (7) of the requisite smoothness, it follows with the help of
inequality (1) that e(x) # ¢,,, &y for all x in (0,5) + (s, L), and that in fact

E(F/A(X)), O0<x<s
g(x) = { (Y

§(FlA(x)), s<x<gL

where p, ¢ = 1, 2, or 3. Moreover, for 0 < x < s, F/A(x) must lic in the domain of £,, while
for s < x < L it must lic in the domain of £,.. On using inequality (1) and the definition of
the inverse functions £, onc can show that this is equivalent to requiring

(s, Fles,, (12)
where the s,.'s are sets in the (s, F)-plane defined as follows:

5 L, F$ U‘;;Am}
L, U,"Aj’ S F< 0",{{,,,,
L

. Opdy € F}

»
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1. F)0<
532 ={(5. )]0 <5
0<
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5= {(s.F)|0<s<l, 6,4dy < F<oyd,}

{(s.F)0<s< L, 0,4(5) S FLoy4,)
sn=(8F)0<s<L, 6,4y < F<oydn}
syip={(s.F)|0<s< L. 6,4dy < F<oyAls)}
sy ={(s.F}|0<s< L, 0,4(5) < F<ouds)}

sp={(F0<s<L. 6,4y S F<oudn.}. (13)

Sy =

Conversely, if (s, F) € s,, for some p, q. then expression (11} is a solution of eqn (7). Observe
that the sets sy, 5, 513, 5,3 are nonempty if and only if the constitutive law and the taper
of the bar are such that

OpAdy <0y d (14)

For a given material, inequality (14) will certainly be valid if the taper in the bar is slight
enough ; we assume throughout that inequality (14) holds.

For a given F. all solutions of the force problem (7). (4). (3); may now be found by
integrating (11). They are

ux) = Uy (x:F.s5), 0<x<L, (s.Fes,. p.gq=1273 (15

where

j E(FJAEN dE, O x<s
U (x:Fsy= <7 (16)
J E,(F1A(E)) dé+J- E(FAEN dE, s<x < L

} £

For p = ¢, (15) and (16) yicld the special solutions

w(x) = Upx; F) = Up(x; Frs) = L & (F[A(Q) dS an

which are independent of s and classically smooth. On the other hand, for p # g, {15) and
(16) provide six one-parameter families of solution to the force problem, with parameter s.
The strain for 0 € x < s is associated with the pth branch of the stress—strain curve, while
that for s < x € L is associated with the ¢th branch; the discontinuity at x = s is called a
“{p, g)-shock™.

According to (13) and (14), there exists at least one solution u(x) to the force problem
corresponding to every given value of F. Ifeither 0 € F < 0,4, 0r F < 0, Ay, this solution
is unique and it is smooth. However, for values of force in the intermediate range
G,A, < F < aydy, there are infinitely many solutions.

Observe from (16) and (17) that as the shock recedes to either one of the two ends of
the bar, each weak solution “merges”™ with one of the smooth solutions

lim U, (x:F,5) = Uy(x; F)
£ 0 (18)

!lrrll Up(xi F,5) = U,y(x; F).

This suggests that the definitions of all of the U,’s, as functions of 5, be extended to s = 0
and L by sctting

Ui FO) = Ux: F)
} (19

qu(x; F’ L) = U‘,(X: )c').
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Finally, one can verify that U,(;F,s,) and U, (;F,s;) are distinct whenever
(p.q) # (m,n),0<s, <L and0<s,<L:

U3 F.5) # U5 Fi52) if (pa@) #(mn), 0<s, <L, 0<s,:<L,
(SI'F)ESP(]' (SZvF)ESrrm‘ (20)

We turn next to the relation between the force F and the elongation 8, which we call
the macroscopic response of the bar. By (3),, (15) and (16), these quantities are related by

0= A,(F.5), (s,F)es,, pg=123 (e2))]
where
A, (F.5) = U,(L.F.s), (s.F)es,, p,q=1.2073. (22)

It can be shown that, if p # g, A,,(F,5) is a monotonic function of s for each fixed F. The
macroscopic response corresponding to any one of the smooth solutions is independent
of s:

5 = A, (F.s) = A(F). (23)

For each (p,q). (21) maps the set s, of the (s, F)-planc onto a set €, in the (3, F)-
plane:
Ch={0.FNd=A(F), F<ayd,)}
€ ={(0.F)|0=A8,(F), 0,4y <K F<ouA,)}
€y ={(6,F)|0=084(F). 0,4y <F]
LFflz ={(0,F)|A(F.L) K< ALF0), 6,4y < F<ayd,}
<

={(0,F)|A(F,0) <0< Ay (F L), 0,dA(s) K F<ayd,}

={(0,F)|An(F. L) €5 € A55(F0), 0,4y S F<oyA,}

= {(0,F)[A3(F.0) €O <Ay (F L), 6,4y < F<ayAs))

={(0,F)| A5 (F.0) <0 <A (F L), 6,A(5) € F<ayud(s)}
={0.F)IAF,L)y <3< A(F0), 0,4y < F<oyA,). (24)

Sketches of the sets €, are shown in Fig. 2. Observe that €, and €, are curves with

positive slope, while €5, is a curve with negative slope. Note also that €,,, €,, and €;; are

Ty Ay

/
T B ]

”mAM
o A

¢,

(o}

(a)
Fig. 2(a, b). Sets €, in the force<longation planc: (a) €,,. €,,. €, (b) €,,. E,,. €,,.
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Fig. 2{c.d). Sets €, in the force—clongation plane: (¢} €, €y, €5, (d) €1, €44, €
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Fig. 2(c. ). Scts €, in the force clongation plane: (&) €, €,,. €,,: (D) €,,. €,,, €.

not connected. The sets €, p # ¢, correspond to various regions linking these curves. The
dashed curves in these regions are curves of constant s. For p # ¢, the mappings s, - €,
are one-to-ong ; this is obviously not the case when p = ¢.

In summary, for sufficiently small and sufficiently large values of the force £, the
force problem has a unique solution; this solution happens to be smooth. However, for
intermediate values of F, we encounter a major breakdown of uniqueness. In fact, in the
intermediate range of F, there are multiple solutions even if the pair (8, F) is prescribed.

4. DISSIPATION, SHOCK DRIVING TRACTION, ADMISSIBILITY

We now turn our attention to quasi-static motions of the bar in which, at cach instant
t, the displacement field u(+, ¢) corresponds to one of the equilibrium states constructed in
the preceding section. Let F(1), f, €1 < 1), be a given continuous, piecewise continuously
differentiable force history. Suppose first that F(1) < 6,4, for all ¢ in [ty ¢,]. Then by
(13y and (17), u{x, ) is necessarily given by the smooth field

u(x, ) = U (x; F(1)), 0<x<L, to€1< (25)

associated with the first branch of the stress-strain curve. Next, suppose that F(1) = gy Ay
for all . Then (13) and (17) yield

u(x,t) = Uy(x: F(1)), 0<x<L, €<, (26)

and again the field is smooth. Finally, assume that 6,,4,, € F(t) € oAy forall tin £y, ¢)].
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Then u(x.t) must have the form
u(x. ) = Uy (X F(0)5(0). 0Sx<L, <<, 27

To begin with, we assume that:

(1) p(r) and ¢{¢) are piecewise constant on [1,, r,], each taking one of the values 1. 2, 3
there, with p(1) # q(1);

(ii) 5() is piecewise continuous on [£o, £,];

(ii1) (s(1). F(1)) €Spngn for ty <t < ¢,

The requirement p(r) # g(t) does not preclude the occurrence of smooth fields for forces
F(¢) in this intermediate range ; such fields occur when either s(1) = 0 or L.

For quasi-static motions of the form (25) or (26). the assumed smoothness of F(1)
and representations (17) guarantee that u(x,*) is continuous and piecewise continuously
differentiable on [t,.¢,] for each x. In order to discuss the more complicated issue of the
smoothness in time of motions described by (27), it is convenient first to introduce the
notion of a transition instant: an instant ¢ €(t,,¢;) is a transition instant if (p(t, —),
gt =) # (p(t,.+). g(t,+)). Ata transition instant, the branches of the underlying stress—
strain curve involved in deformation (27) change from the p(s—)th and g(r—)th to the
p(t+)th and g(e+)th.

It ts natural to require that u{x, ) as given by (27) also be continuous on [t ¢,] for
every X, 0 € x < L. Let ¢, bein (£, ¢), and assume that u(x, ) is continuous at ¢ . Suppose
first that ¢, is rot a transition instant. Then p(r—) =p{t+) =p, ¢(t—) = gt +) = q. s0
from (27)

Wty +) = (X, 0y =) = U3 F (1), 50ty +)) = Uny(x: F(2,), 5(t,—=)) = 0 (28)

for every x in [0, L]. Now p # ¢, and definition (16) of U,, shows that (28) cannot hold
under this circumstance unless

s(t,+) = s(r,—) if £, is not a transition instant. (29)

Now suppose that ¢, is a transition instant. Let p(1, =) = p, g1, =) = ¢, plt,+) =m,
q(t,+) = n; by (27), continuity of u(x, ) at ¢ = ¢, then implies that

qu(x , F(t..)s S(t* +)) - Umn(X; F({*)s S(:* - )) =0 (30)

for all x in [0, L]. Since 7, is a transition instant, (p,¢) # (m,n), and (20) shows that (30)

cannot hold unless at least one of the numbers s(r, +), s(r, —) takes either the value 0 or

the value L. More detailed examination of (30) shows that one of the following four
mutually exclusive possibilitics must hold :

s(ty+) = s(t,~) =0, and g(t,+) = ¢{t,—) ] (31a)
s(t,+) =s(t,~)=L,and p(t,+) = p(t,~) ) it {31b)
Sty +) = Lo s(t, =) = 0, and p(1,+) = q(t,—) [ * B2 (34
Sty +) =0, 5(t,=) = L. and p(1, ~) = g, +) ) "HOm ISt a4

Thus (29) and (31) are necessary for the continuity of w(x,) at an instant r_ in
(to.21) s if either 1, = 15 or ¢, = ¢, (29) and (31) continue to be necessary, provided the
appropriate + or — is deleted in the arguments of s, p and ¢. Moreover, one can show
that, in the presence of the assumed smoothness of F(1), (29) and (31) (or their modified
versions when ¢, is an end-point of [t,.1,]) are sufficient for the continuity of u(x,-) at
t =1, as well.

The argument above shows that discontinuities in s{¢) can only occur at transition



On the dissipative response due to discontinuous strains in bars 1029

instants ¢, ; if there is such a discontinuity, the shock x = s() recedes to one end of the bar
as t - t, — and then advances into the bar from the other end as ¢ increases from ¢,. When
s(#) is continuous at a transition instant ¢, necessarily s(¢,) = 0 or L. Thus a transition
from a discontinuous strain field involving branches p and g of the stress-strain curve to
one involving branches m and n, with (p. q) # (m, n), always takes place through a smooth
field. A further consequence of conditions (29) and (31) is that a shock cannot emerge
instantaneously from a smooth field at an interior point of the bar. Observe that these
restrictions on the motion x = s(r) of the shock arise from purely kinematic requirements,
together with the assumption that the bar is strictly monotonically tapered. Further restric-
tions on the shock motion will arise later.

Finally, we require that s(¢) should be piecewise continuously differentiable between
every pair of successive transition instants. This will assure that u(x,") is piecewise con-
tinuously differentiable on [¢,.7,]. A regular instant during a quasi-static motion is a time ¢
at which F(r) exists and. if the motion is of the form (27). $(¢) exists and p(¢) and g(¢)
are continuous.

Figure 3 describes an example in the (x, f)-plane for which the shock history involves
transition instants of each of the four kinds listed in (31a)-(31d). The encircled numbers
in Fig. 3 refer to the branches of the stress—strain curve appropriate to the two sides of the
shock at various times.

The elementary quasi-static motions (25), (26) and (27) may be linked together on
successive time intervals [¢,, )], [¢,. ¢:]. and [t,, t;] to form a compound quasi-static motion
on [¢,. £3], provided the resulting displacment u(x, *) is continuous on [t ¢,] for every x.

Next we consider the energetics of a quasi-static motion. The total strain energy stored
in the bar in an cquilibrium state with displacement U, (x: F,s) is

5

0

I3
E, (F.s) =j W (E,(F1A(x))) A(x) dx+f W (£, (F/A(x)) A(x) dx,

pg=123 (s,Fes,. (32)
During a quasi-static motion of the form (27), the energy stored in the bar at time ¢ is
E() = Eypgn(F(0).5(1), 1y Sty 33

At a regular instant during this motion, we define the rate of dissipation d(r) to be the
difference between the rate of external work and the rate of increase of stored energy

d(1) = F()o(t) — E(1) (34)

wd @ @
l“c.® 2 x=s(t)
®
&)

Q,
tg S
L L
T - 1 x
0 U

Fig. 3. Examples of the four types of transition instants ¢, in (31).
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where, by (21), the elongation J(¢) of the bar is
(1) = Ay (F(D.5(1), th <1<ty (35)
and A, is given by (22). A direct calculation based on (32)—(35) yields
d(1) = [[W(e) —(e)e]] 2 A(s(1))$(2) (36)

for each regular instant during the motion. Here [[g]] denotes the jump at x = 5(f) of
function g(x): {{g]] = g(s(¢) +) —g(s(¢) —). It follows from (36) that d(r) = 0 if the motion
happens to be smooth at time ¢, so that all jumps in (36) vanish. In general, however,
d(t) # 0 for motions of the type (27). For motions of the type (25) or (26). the dissi-
pation rate of course vanishes identically.

Let f(t) be defined by

SO =[[WE)—d@Ee)*. <<, (37)

and by f(1) = 0 for motions of the type (25) or (26). Since by (34), (36) and (37), at a
regular instant

E = Fo+(—fA(5)s (38)
it follows that onc can view —f(¢) as a traction applicd by the shock on the bar, or
cquivalently, f(£) as a traction applied by the bar on the shock. The general notion of a
“thermodynamic force™ or “driving force™ on a “*defect™ was introduced by Eshelby (1956).
Equation (37) is a special case of a formula for the force on a phase boundary given by
Eshelby (1970) and discussed by Rice (1975); sec also Knowles (1979). We refer to f as
the “shock driving traction™. Observe from (8) and (36), that the shock driving traction
coincides with the jump in the Gibbs free energy across the shock

SO = [[Ge(x, D] (39)

On using (10), one obtains from (39) the following expression for the shock driving traction :

SO = frnan(6(1)) (40)
where 6(¢) 1s the nominal stress at the shock
6(1) = F()/A(s(1)) (41
and functions f,, arc determined by the material; they are given by
£,(0)
Solo) = J“ d(e) de—a{é (o) —€,(0)}, 0., <o0<0y, p,g=123. 42)

()

The following properties of functions £, will prove to be useful. First, note from (42)
that

J(@) = ~fi(0), 0, <o <0y, pg=123. (43)

Second. differentiating (42) yiclds

>0, 6,L0<L0y, p>q
Sr(0) =6, (0)—E(6){ =0, 0,<0<0y, p=gq (44)
<0, o6,<0<0y. p<yq.



On the dissipative response due to discontinuous strains in bars 1031

Next. on recalling the properties of the inverse functions ¢,, one can readily verify from
(42) that

f31(0.) <0, f5(6) = 0. fi(oy) > 0}
43

f21(64) =0,  fi:(0,,) = 0.

Integration of (44) with the help of (45) then gives the following useful alternative formulas
for f,,:

a

Sn(o) = j {€s(0) —£€:(0)} dr, On SO KOy

Y

fst(o'):J; {&;(0)—€,()} dr, On SO K0y (46)

Si(o) = -—J "’ {6:(0-¢(0)} dr. o,<0< O'Mj

the other f,;'s are related to these through (43). Observe from (46) that f,,, f4, and f3, are
monotonically increasing functions on (a,,. g,,). Moreover, f;, is nonnegative on its domain
of definition while f5, is nonpositive ; on the other hand f5, changes sign once:

"

0, o.<o<o0y

f_):(f’){

A

>0, o.<a<ay
Sule)y=0, o=o0, r 47)

<0, o6,<06<a,

=0, o=o0y
f“(a){<0, 0, <0 <ay.

7/

A quasi-static motion is said to be admissible if the rate of dissipation is nonnegative
SOs(t+) =0, t, <1<, (48)

On adapting the thermodynamic arguments given by Knowles (1979) to the present one-
dimensional context, one can show that (48) is equivalent to the Clausius~-Duhem inequality
when the temperature is constant in space and time. Observe that (48) holds with equality
if the shock is stationary or if the shock driving traction vanishes; the latter alternative
occurs if and only if either (i) the field is smooth or (ii) (p, ¢) = (3, 1) or (1, 3) and the stress
at the shock is the Maxwell stress. All motions of the type (45) or (47) are trivially
admissible. In general, (48) is to be viewed as a restriction on allowable quasi-static motions.
Note from (35) and (48) that a quasi-static motion is admissible at an instant ¢ if and only
if the Gibbs free encrgy of a particle at the shock front does not increase as the particle
crosses the shock. In the following section, we investigate the consequences of admissibility.

5. CONSEQUENCES OF ADMISSIBILITY

Consider an admissible quasi-static motion of the form (27) in which p(¢) = p = con-
stant, g(¢) = g = constant for ¢, < ¢t < t,. If, for example, p = 3, ¢ = 1, then by (44), (36)
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and (43),-admissibility requires that

S(t+) =20 if 41 >0,
St+) <0 if &) <o, (49)
G(t+)s(t+) =0 if (1) = 0.

where 6(r) = F(r)/ A(s(r)) is the stress at the shock. The curve in €;, given by F = 6,4(s),
& = Ay \(0.A(s), 5) is called the 3. [-Maxwell curve ; points on this curve correspond to equi-
librium fields in which the stress at the shock coincides with the Maxwell stress.

Every quasi-static motion determines a path in the (3, F)-plane. For the motion con-
sidered above, this path lies in the set €,, (Fig. 2), and-—through (49)—admissibility
restricts the possible directions of the path. Figure 4(a) illustrates the permissible directions
of departure of such a path from various points in €;,. The dashed curves in the figure
represent lines s(7) = constant; for motions the paths of which lie along a curve s = con-
stant, there is no dissipation. The same is true for motions the paths of which lie on the
Maxwell curve.

Similar considerations apply to motions of the type (27) for other values of the pair
(p.q). Forp = 1, ¢q = 3, there is also a Maxwell curve, but for the remaining possible choices
of (p.q). this is not the case. Figures 4(b}-(f) show the admissible directions for the
remaining choices of (p, ¢). In Figs 4(a) and (b) and hereafter, we assume that

Ol <A Ay, o jay < d,]4y. (50)

These inequalities, which imply (14), certainly hold for a given material if the taper of the
bar is slight enough.

Admissible dircctions for compound motions can also be read off from Fig. 4.

From Fig. 4(a), it is clear that transitions ol the form €| - €, €, - €, E;; —
€. €, - E,; arc all possible: similar inferences may be drawn from Fig. 4(b). The
situation is different, however, for admissible motions that involve branch 2 of the stress-
strain curve. For example, Fig. 4(¢) shows that, while the transition €, — € is admissible,
the reverse transition is not ; similarly, €., — &, is possible, but €,, — &,, is not, Parallel
conclusions follow from Figs 4(d)-(f). In general, one can readily show that admissible
quasi-static motions proceed in such a way as to diminish—or at feast not increase —the
length of the portion of the bar bearing strains associated with branch 2 of the stress-strain
curve.

The above considerations suggest that the totality of all equilibrium displacement ficlds
be divided into two disjoint parts A and U as follows. Let

A={U,(:Fs))(s,Fes,,p=1or3,q=1or3}

U= {U, (" F.5)|(s.F)€es,, either p =2 or ¢ = 2}. (51)
F
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Thus the ficlds in A correspond to those cquilibrium states that involve no strains associated
with branch 2 of the stress-strain curve in Fig. 1; U contains all remaining displacement
ficlds. Consider a compound admissibic motion the displacement field of which at the initial
instunt belongs to A. Figure 4 suggests that displacement fields for this motion at all later
times must also belong to 4. Indeed, if at some later instant the corresponding displacement
field were in U, the length of that portion of the bar carrying branch 2 strains would
necessarily have increased at some earlier time, contradicting the assumed admissibility of
the motion. Thus states in U are not accessible from states in 4 during an admissible quasi-
static motion; in particular, a motion that commences at the unloaded, unextended state
F = J = 0 can never enter the collection U of states involving strains on branch 2 of the
stress—strain curve,

Let d(¢) be the rate of dissipation in a quasi-static motion at cach regular instant ¢;
the rotal dissipation D associated with the motion is

D= J' " dt, (52)

8

It is possible to show that all admissible quasi-static motions the total dissipation of which
is sufficiently large must ultimately enter the collection A, where-—in view of the discussion
above—they will subsequently remain. We shall not prove this result here (see Abeyaratne
and Knowles (1987a, b) for proofs of closely related propositions).

One may thus regard the collection A4 of equilibrium fields as an attractor for admissible
quasi-static motions: the set U may be thought of as unobservable. From here on,
we shall be concerned only with motions through equilibrium states that can be reached
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admissibly from the state F =6 = 0; as a result. we need no longer consider states that
include strains associated with branch 2 of the stress-strain curve.

In reaching the conclusions described above. the fact that the cross-section of the bar
is tapered, rather than uniform is crucial. For a uniform bar, the implications of admissibility
are much weaker than those described above. The distinction can be appreciated with the
help of Fig. 5. which shows the sets €,, for the uniform bar. Observe from the figure that
the sets €, . €., and €, corresponding to smooth strain fields are now connected, each to
the next. in contrast to the corresponding sets for the tapered bar as shown in Fig. 2 or Fig.
4. Thus for a tapered bar. one cannot move quasi-statically from states in €,, to states in
€., by utilizing smooth fields alone ; such a transition would demand the presence of fields
with equilibrium shocks. which-—by the discussion above —is forbidden when admissibility
is imposed as a requirement. On the other hand Fig. 5 shows that, for the uniform bar,
one can construct quasi-static motions involving only smooth—and therefore trivially
admissible -—fields that pass from states in €, to states in €,,. Thus while admissibility
forces the collection U of equilibrium states involving branch 2 to be inaccessible’ and
transient in the presence of sufficient dissipation in the case of the tapered bar, it does not
deliver the corresponding results for the uniform bar.

6. KINETIC RELATIONS AND SHOCK INITIATION

The specification of either the force history F(r) or the elongation history d(¢) during
an admissible quasi-static motion is not suflicient to determine the motion uniquely unless
the ficld is smooth at cach instant. This suggests that the constitutive characterization of
the material must be supplemented if the response is to be determinate when equilibrium
shocks are present.

In the macroscopic F -0 relations (21)-(23) pertaining to equilibrium states with shocks,
the shock location s may be viewed as an “internal variable™. Indeed, the formalism used
in internal variable theories of plasticity such as those developed in Rice (1970, 1971, 1975)
has a counterpart in the present context. Because we do not need this formalism here, we
do not discuss it in detail (it has been described in a related setting in Abeyaratne and
Knowles (1987a,b)). A common ingredient of such microstructural theories of inelastic
behavior s an evolution law, or “kincetic relation™, relating the time rate of change of the
internal variable to the corresponding ““thermodynamic force™. We adopt this point of view
here by postulating a relation between the shock driving traction f(¢) of (37) and the shock
velocity $(¢) that must hold during a quasi-static motion. This relation is determined by the
material and is regarded as given.

F
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Fig. 5. Sets €, and admissible directions for the uniform bar.
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Suppose we have an admissible motion of the form (27). Recall relation (36) between
the shock driving traction f(f) during such a motion and the stress at the shock &(r), and
let

M, = max f (o). m, =

0, <T%0y

i 3
i (@) (53
be the maximum and minimum values of the material functions f,, introduced in (42).
For each p.¢ = 1.2.3 with p # g. we assume there is a given function V), defined on
(m,y. M,,) x [0. L] and such that. between successive transition instants during the motion,
the kinetic relution

sy = i;,mqm(f(t}.s{t)) (34

holds. If the functions V,,( f.5) are independent of s, we say that the kinetic refation is
homogencous , we assume this to be the case henceforth,
We now impose on each kinetic response function V,, the requirement that

VA f=200 m,<f<M, 0<s<L: (5%

by (48) and (54), this assures that all quasi-static motions compatible with the kinetic
relation are admissible.
We also require that, forcach p, g withp # ¢

Vw'(f) = -V ("‘j) for —M

ry P

<f < =my. (56)
{Note that, by (33) and (53). m,, = —M,,,.) The motivation for (56) lics in the fact that the
kinetic response functions ¥V, are to depend only on the material and not on the geometry
of the bar under consideration. In particular, they must apply in the case of uniform bars,
for which (3, 1)-shocks and (1, 3)-shocks are mirror-images of onc another if the stress at
the shock is the same for both.
Since the shock driving traction f(1) during the motion is related to the stress at the
shock @(1) by (40), the kinetic relation (54) may be expressed in terms of & instead of f
S = Lo lG(D)) = o F () A((0))) (57
where the material function ¢, is defined by

v (0) =V, (f (o). 6,<a<ay. (58)

By (40} and (43), properties (55) and (56) of the V,

Uy S

. § yicld corresponding propertics of the

Arw'
() fo(@) 20, 0,<0<ay (59)
rp(e) = —r,(0). 6,<a<0y. {(60)

Between two successive transition instants, p(2) and ¢(¢) arc both constant: p(r) = p,
q(1) = q; for a force-controlled motion in which F(¢) is given, (57) is then a differential
equation governing the location x = s(¢) of the associated (p, ¢)-shock.

For definiteness, consider a program of loading in which the given force history F(1),
0 <+ < T, begins at F(0) = 0. so that initially 8(0) = 0 as well. and suppose that F(1)
increases with 7 to a final value F(T) > ¢, A4, To describe the possible quasi-static motions
associated with F(¢), we shall trace the corresponding force-elongation histories in Figs
6(a) and (b). which contain the information in Figs 4(a) and (b) pertaining to equilibrium

SAS 24:10-0
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Fig. 6. Possibic loading paths in: (a) €,,: (b) €, ..

states with (3, 1)- and (1, 3)-shocks. (Recall from the preceding section that states with
either p = 2 or ¢ = 2., or both, can never be reached admissibly during a force history of
this kind. so that Figs 4(¢) -(f) need not be consulted.) Reference to Fig. 6 shows that, as
F (1) increases from zero to the value g, A4, at, say, time ¢, the associated quasi-static motion
is necessarily smooth and of the form (25). During this period, the force clongation
relation corresponds to the curve OA in cither Fig. 6(a) or (b), and according to (21) -(23),
it is given by

8O = A (F(1)). (o)

As F(t) increases beyond o, 4,,. cquilibrium states involving (3, 1)-shocks become available
(Fig. 6(a)). but as indicated by the arrows in the figure, none can be reached admiss-
ibly until the time, say ¢., at which F(1,) = 6.4,,. Thus on the time interval [¢,,1,]. the
motion is of the form (27), with w(x.t) = Uy (x: F(1).0) = U, (x; F(), L) = Ux;
F (1)), the displacement field remains smooth at cach instant, (61) remains in force, and the
force-elongation curve continues along the arc ABC. For 1 > ¢, and F(1) > a.4,,. the
situation changes. Let F(¢;) = 0.4, whent, <t < 1, there are two alternative possibilities,
cach consistent with admissibility : either the deformation continues to be smooth at each
instant, with u(x, t) = U,(x; F(1)), or a (3, 1)-shock is initiated at the end x = 0 of the bar
at a certain instant ¢, 2 ¢, and begins to advance into the interior in accordance with kinetic
relation (54) (or (57)). In the former event, (61) continues to hold, and the force-clongation
curve is ABCD (Figs 6(a) and (b)). However, if a (3, 1)-shock forms, then the £-8 curve
departs from ABCD at a point O, (Fig. 6(a)), with

5 = Ay (F(1), 5(1)). (62)

Here s(1) is the location of the shock at time ¢ > 1 it is given by the solution of the
differential equation (57) with p = 3, ¢ = I, subject to the initial condition s(r,) = 0. If a
shock does nor form and the first of the two above alternatives occurs, the force, having
generated only smooth deformations, eventually attains the value F(1,) = g, A,,, after which
any one of three mutually exclusive types of admissible responsc historics may occur. First,
the fields may remain smooth, with (1) = A,(F(t)) : second, a (3, 1)-shock may emerge at
x = 0, after which (62) will take over; third, it is now possible to create a (1, 3)-shock at
x = L. If this third possibility occurs, say at time ¢, , the force-clongation curve will depart
from ABCDE at O, (Fig. 6(b)), and the F-§ relation will be

0(8) = A (F(1). s(1)) (63)

instead of (61).
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The kinetic relation alone does not determine whether or when a shock forms during
the above loading program or. if so, whether it is a (3, 1)-shock at x = 0 or a (1, 3)-shock
at x = L. [tis therefore necessary to establish in addition a criterion for shock initiation. If
a (3. 1)-shock forms at x = 0 at time ¢, (corresponding to the point O, in Fig. 6(a)), then
the strain at the particle x = 0 will jump from a value associated with branch 1 of the stress—
strain curve to a value on branch 3: for brevity. we say that the particle has undergone a
transformation from "“phase 1™ to “phase 3™ at time ¢,,. The same can be said of the particle
x = Lifa(l.3)-shock emerges from x = L at time ¢, (point O, in Fig. 6(b)). We now
adopt a specific criterion for such shock-initiating—or “spontaneous” —phase 1 — phase
3 transformations : the particle x = x, will spontaneously transform from phase 1 to phase
Jattume ¢, if the stress

o(x,.t,) =Xy and o(.t,) has a local maximum at x,. (64)

Here the “transformation stress™ Z,, is determined by the material and presumed to be
known. (The alternative to a spontaneous transformation occurs when a particle changes
phase due to the passage of a pre-existing shock through that particle.) For the reverse
transformation, we similarly postulate that the particle x, will spontancously transform
from phasc 3 to phase | at time ¢ if

t

o(x ) £ X, and (. ¢,) has a local minimum at x, (65)

L A
where the reverse transformation stress Z,,, is also given. Admissibility requires that £, and
¥, satisfy

Ty < Zm S T, s E.\I < Tpr- (66)

Since the bar is monotonically tapered, the maximum stress at cach instant occurs at the
small end x = 0, the minimum at x = L. Thus shocks corresponding to phase | — phasc 3
transtormations can only be initiated at x = 0, and those corresponding to phase 3 — phase
I transtormations only at x = L.

We remark that the shock initiation criterion introduced above can be alternatively
formulated in terms of critical values of shock driving traction, rather than in terms of the
critical values £, and X, of stress at the shock. In the present one-dimensional context, no
advantage is gained by using this formulation, so we omit it. In higher dimensional settings,
however, it is tikely that the alternative formulation is essential.

When applied to the loading program described in detail above, our criterion singles
out a definite response history from among the possibilities listed there : as ¢ increases from
zero, the equilibrium ficlds remain smooth and the force-elongation relation remains given
by (61) until the instant 1, at which a(0,¢,) = F(¢,)/A. = Z,,. At time ¢, a (3, 1)-shock
forms at x = 0. The evolution of the shock location s(¢) is then controlled by the differential
equation (57), with p(¢) = 3, ¢(¢) = 1, subject to the initial condition s(¢,) = 0. Under
suitable restrictions on the kinetic response function vy, to be specified in the following
section, the associated force-clongation response curve, described now by (62), will remain
in the set 54, of (3, 1)-cquilibrium states; it is the curve O, P, shown schematically in Fig.
6(a).

As the foree F(1) increases above the level associated with the point P, the subsequent
response necessarily is smooth and corresponds to branch 3 strains; thus the F-J relation
now becomes

o(1) = Us(F(0).5(1) (67)

during the remainder of the loading process.

If the force F(r) is now decreased monotonically to zero from its greatest value F(7).
the ensuing deformation will be smooth, and the force-elongation relation will be given by
(67) until the minimum stress in the bar o(L, 1) reaches the lower transformation stress Z.,,.
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At this instant. the particle x = L undergoes a phase 3 — phase | transformation, and a
(3. )-shock is created at x = L, moving leftward into the bar in accordance with (57). The
F-§ response curve, though again described by (62), will differ from tts counterpart during
loading. Once this curve rejoins OABC. the response during the remainder of the unloading
process is that associated with branch 1 smooth fields. continuing down OABC to the
origin.

Finally, it should be noted that kinetic relations. the structure of which is substan-
tially more general than (54). could be considered.

7. A SPECIAL CLASS OF KINETIC RELATIONS

We now consider a special class of kinetic response functions 17 in (54) (or ¢ in (57)).
After investigating some of their properties. we illustrate in detail the visco-plastic nature
of the macroscopic response of the bar to which they give rise. We discuss rate-independent
dissipative response and purely conservative, dissipation-free behavior in the present context
as well.

Since we shall be concerned only with equilibrium states accessible through admissibie
motions from the unloaded, unextended state F = § = 0, we will not encounter strains on
branch 2 ol the stress-strain curve. Moreover, for the loading programs to be considered.
the shock initiation criterion of the preceding section will always rule out (1. 3)-shocks.
Thus we shall be concerned with kinctic relation (54) only when p() = 3, ¢ty = 1. As a
result, we shall write 1y, = Vo, = 0. My = M, my = mthroughout the present section
for convenience. Recall from (46), (47) and (53) that m < 0, M > 0.

7.4 The kinctic response function

Guided in part by the form sometimes ascribed to the counterpart of function ¥ in
miucrostructural theories of plasticity (Martin, 1975), we now make three assumptions
concerning the form of V. (1) We assume that there arc numbers m, and M such that

m<m, <0 M, <M (68)
and

Vify<0for m< f<m,
Vif)y=0 for m,< /<M, (69)
PS>0 for M < /f<M

noting that (69) is consistent with requirement (55) imposed by admissibility. (1) We assume
that V(f) is continuous on (m, Af) and continuously differentiable on (rm, m, )+ [M ., M),
and that V'(f) > 0 for m < f < m, and for M, < f < M. (iii) Finally, we assume that
POy is unbounded as f— m+ as f— M~ more precisely, we require that

PO < Cuf—m) ! for £ sufliciently near m }
(70)
>

() 2 CoytM =/ ! for [ sufliciently near

for suitable constants C,, < 0 and Cy, > 0.

According to (i), a (3. 1}-shock will move in the + x-direction only if the shock driving
traction exceeds M. and in the reverse direction only if fis less than m . Permitting V' (/)
to vanish over the interval [m,, M ] will be scen later to allow for the possibility of
dissipation-free unloading and re-loading. Assumption (ii) assures that, roughly speaking,
larger shock tractions promote greater shock speeds. The role of property (70) will become
clear as we proceed. A schematic sketch of the graph of V() is shown in Fig. 7(a); it is
reminiscent of the relationship sometimes proposed between the driving force on a dis-
location and dislocation velocity (Martin, 1973).
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Fig. 7. Kinetic response functions } and ¢.

By (58). property (69) of ¥ translates into a corresponding property of r

vy <0 for o,<0<ot
{6y =0 for of<a<a? (7

(o) >0 for of <o <ay
where o and o3, are the unique numbers defined by
Su@)y=mg fuloh) =M,. (7
Clearly, o and o satisfy
O, <of <o, KoY <oy (73)

where g, is the Maxwell stress (Fig. 1). Clearly, the two transformation stresses £y, and ¥,
associated with shock initiation must satisfy

6”! < Z"! g G‘

£

€0, <oy <Ly <oy (74)
Property (70) of 1 is readily shown to imply that there are numbers o), and ¢}, with
6, <a,<akuand of, < oy, < a,, and such that

(o

¢uld—0,)"' for ¢,<0<a,
(75)

) &
(o) = cyloy~6)' for oy <o <oy

for suitable constants ¢,, < 0 and ¢y, > 0. A schematic graph of ¢(g) is shown in Fig. 7(b).
If ¢ stands for the inversc of the restriction of v 10 (0,,. 6%] +[o%. a4,). version (57) of
the kinctic relation may be put in the alternative form

a(1) = F(1)/A(s(1) = p($(1)). (76)
Note that ¢ has a discontinuity at the origin unless 6% = 0, = o¥,.
Supposc for the moment that we have a motion taking place on the time intecval [1,, T}

and involving a (3, 1)-shock located at x = s(1) at time . As time increases, the shock
location s(r) will evolve according to the kinetic relation (57), which in present notation is

$(0) = e(d(0) = c(F(1)/A(s(D)). amn
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Property (75) guarantees that the moving point {s(¢). F(¢)) in the (s, F)-plane remains in
the set s,, corresponding to equilibrium states with (3. 1)-shocks. To prove this. it 1s
sufficient to show that the stress at the shock 6(¢) = F(r) A(s(1)) never exceeds o4, and is
never less than o,,. Suppose that, at the initial instant ¢, one has ¢}, < (¢} < o4, so that
the inequality (73). holds at time ¢,. We shall show that 6(¢) < o, forall ¢in {t,. T]. Suppose
this were not the case. Then there would be instants ¢ in (¢,. T at which 6(¢t) = o,,: let ¢,.
be the infimum of all such instants. Clearly

ty<tie<T. 6(t)<oy for ty<t<t.. and 6(t.) =0y (78)

by the continuity of &(r). Now let 74. be the supremum of the set of all times ¢ for
which 6(¢) € oy and 1, <t < 1.. Then for t,. <t < 1,., we have ¢}, < 6(1) < gy, so that
inequality (75). applies. and v(6(¢)) > 0, whence by (77). $(¢) > 0 during this time interval
as well. It follows that we may express ¢ as a function of s:¢ = /(s). and thus regard
G(#(s)) = &(s) as a function of s as well. Then by (41) and (77)

G (S)A(5) +6()A°(5) = d/ds{F(i(s))} = F(H(5))/5(i(5))
= F(i(5))/0(6(s)). (79)

Let 2 = max [F(D)]. t, <t < T. be the maximum loading rate during the motion. Then by
(75); and (79)

G (AW +F()A() < Aleyl oy —a6(s)). sy < ¥ < 540 (80)

where 5. = 5(£y.). 5, = s(1,.). Integration of this lincar differential incquality and using the
fact that A(s,.) < A(s) leads to

]

A ! d.\}, Soe ¥ € 5ye (81)

e

a(y) < oy~ (0, —dy) CXp {"(}-/C.\/)J

5

with 4, = 6(s-). [n particular, this gives 6(s,.) = (1) < a4, contradicting (78). [t follows
that (1) < oy for 1y < ¢ < T. Thus the stress 6(¢) at the shock in a motion governed by
(77) never exceeds oy, ; a similar argument shows that 6(r) is never less than g,

7.2. Mucroscopic response

We now clucidate the nature of the macroscopic response of the bar under various
force-controlled programs of loading for the class of kinetic relations described above.
First, let F(1) = 41, 0 €t £ T, corresponding to loading at a constant ruate 4 from the
undeformed state. Assume that the final value of force is such that F(T) > o4, 4,,. The
force-clongation response answering to this loading is shown schematically in Fig. 8(a).
After loading begins, the point (3(¢). F(1)) rises from the origin O along the response curve
OAO, associated with smooth fields of the type (25), so that 6(¢) = A (F(¢)). and therc is
no dissipation. When the force reaches the level corresponding to the point O, in Fig. 8(a),
the stress at x = 0 coincides with the larger transformation stress X,,, and a (3, 1)-shock is
created at x = 0 according to the shock initiation criterion of the preceding section. Kinetic
relation (77) takes over, and the initial shock velocity has the value v(X,,). By (74). Z,, = a3,
so that by (71), ¢(Z,,) = 0. If £, > a¥, then e(Z,,) > 0, the initial shock velocity is positive,
and there is a discontinuity in slope in the -0 response curve at O, as shown in the figure.
If £,, = 6%, the initial shock velocity is zero, and the slope of the £--¢ curve is continuous
at O,. Under the control of (77), s(t) increases with ¢, the clongation is given by
o(1) = Ay (F(1),5(1)), and the point (6(f), F(r)) moves along the curve O, BP, both F(/)
and J(z) increasing. This stage of the process is accompanied by dissipation. When the force
has increased to the value associated with point P in Fig. 8(a), the shock has arrived at the
end x = L of the bar, all particles are in phase 3, and the field is smooth. As the force
continues to increase, the response is that of smooth, dissipation-free phase 3 deformations,
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with 6(1) = A;;(F(1)). The loading terminates at time T, corresponding to point Z in the
figure.

Now suppose that F(¢) is decreased at the constant rate 4 from its largest value F(T)
to zero. The response curve at first follows the arc ZPO,, corresponding to smooth phase
3 fields. and the response is dissipation free; at Q,, the stress at the larger end x = L of the
bar has diminished to the smaller transformation stress Z,,. and a leftward moving (3, 1)-
shock emerges. The sign of v in (77) is now negative, s(¢). F(r) and 8(z) all decrease, and
the arc Q,CA is traced out as the shock returns to x = 0, dissipating as it moves. As F(f)
decreases to zero from its value at A. 6(¢) = A (F(#)) again along the arc AO, and the final
stage of unloading takes place without dissipation. The total dissipation in the loading cycle
is of course precisely the area of the hysteresis loop AO,PQ_A.

If the loading rate 4 were changed, the loading and unloading “yield points™ O, and
Q, would remain the same, but the arcs O, BP and Q,CA associated with the dissipative
portion of the process would change. The macroscopic response is thus rate dependent.

Consider now a modified version of the loading history described above in which the
force F(r). after arriving at the value associated with point B in Fig. 8(a), is decreased, and
then ultimately increased again. Figure 8(b) shows the resulting macroscopic response. As
before, the response curve is the arc OO, B during the initial loading phase. the portion
O, B being dissipative. When F(¢) begins to decrease. v(F(1)/A(s(¢))) remains positive at
first, and (77) requires s(¢) to continue to increase, accompanied by dissipation. During this
stage, o(r) will also continue to increase, generating the arc BC of the response curve. At
point C, the stress 6 at the shock has dropped to the value a3, so that by (71), v(§) = 0 at
the corresponding instant. If a¥ > % in (71), and if F(¢) continues to decrease below its
value at C, 6(¢) will remain in the range for which ¢(6(f)) vanishes, so that $(£) = 0 and the
shock remains stationary. During this portion of the unloading process, the corresponding
part CD of the response curve lies along a curve of constant s, and there is no dissipation.
If now the torce F(r) is increased, the initial portion of the reloading process takes place
along DC and is dissipation free. If the force ultimately increases sufficiently to raise the
stress at the shocek to a value greater than o, the shock resumes its motion, dissipation
will begin again, and the response curve will proceed along CE. This particular force history
illustrates the occurrence of disstpation-free unloading with a stationary shock.

If, during unloading in the last program, the force had been decreused sufliciently
below its value at D, the stress at the shock would diminish below the value o, causing

ZMAm
zmAM
A 3 &=zm
oo
o 3

Fig. 8(a). Loading -unloading path according to kinctic relation (77).
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Fig. &(b). First loading unloading reloading path according to Kincetic relation (77)
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Fig. 8(¢). Second loading -unloading - reloading path according to kinetic relation (77).

v{a{1)) to become negative, forcing the shock to move to the left. Figure 8(¢) shows the
macroscopic response curve OO0, BET for such a force history. together with the response
on reloading. The arcs OO, . CE, and GH correspond to dissipation-free periods during
the quasi-static motion.

The macroscopic response of the bar during the loading programs just described clearly
resembles that associated with visco-plastic behavior in several respects. One feature of the
latter kind of behavior that is not present here is that of permanent strain. By abandoning
the requirement a,, > 0 in (9) and thus considering a stress-strain curve the local minimum
of which (Fig. |) corresponds to a compressive stress @,,, one can introduce permanent
strain into the macroscopic response (Abeyaratne and Knowles, 1987b).

7.3. Rate-independent behavior

The form of the kinetic response function sketehed in Fig. 7(b) suggests consideration
of the limiting case in which the function ¢ inverse to ¢ is a step function as shown in
Fig. 9:
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F .
F2¢p(3)

Zu

Te

S=CONSTANT

0 3
Fig. 9. Rute-independent macroscopic response.
Ty for s>0
() = . . 82
p(¥) m for s<0 (82)

where &y, and £, are the shock initiation stresses, 6, € £, < 6, < Ly < 0y, and o, is the
Maxwell stress. One shows readily that the macroscopic response produced by the kinetic
relation is rate independent and is of the form shown in Fig. 9. If X, = ¢,, and £, = g,
the quasi-static motions permitted by the kinetic relation are maximally dissipative in a
definite sense (response of this kind is discussed in detail in Abeyaratne and Knowles
(1987a)).

F
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Fig. 10. Dissipation-frec macroscopic response.
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7.4. Dissipation-free macroscopic response

Finally, we note that the purely conservative (or dissipation free) response of the kind
conventionally associated with elastic behavior results from choosing the inverse kinetic
response function ¢ to be

() =0. for —x<s<w (83)

and taking both shock initiation stresses £, and Z,, to be equal to the Maxwell stress o..
In this case, the macroscopic response is independent of past history and is as shown in
Fig. 10.
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